O.P.Code: 20EE0223

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year II Semester Regular & Supplementary Examinations June-2025 POWER SYSTEM ANALYSIS

		POWER SYSTEM ANALYSIS			(4		
(Electrical & Electronics Engineering)							
Time: 3 Hours					. Marks: 60		
		(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-1					
1		What are the different power system elements in the power system network?		L2	6M		
	h	Define the terms i) Graph ii) Sub-graph lii) Tree iv) Co-tree v)Planar	CO1	L3	6M		
		Graph vi) Branch and Links.					
		OR					
2		Derive the expression for the Direct inspection method for a 3 Bus power system network.	CO1	L3	12M		
		UNIT-II					
3	a	Define positive, negative, and zero sequences components in 3 phase systems.	CO2	L3	6M		
	b	Derive an expression for the fault current for the LG fault.	CO3	L3	6M		
	~	i)with impedance ii)without impedance.	COS	LIS	OWI		
		OR					
4		Explain about Short Circuit KVA and short-circuit current.	CO2	L4	12M		
		UNIT-III	COZ	LT	12111		
=			600				
5	a	What is load flow analysis? What is the necessity for load flow studies?	CO ₂	L2	6M		
	D	State merits and demerits of Gauss-Seidel method.	CO ₂	L2	6 M		
		OR					
6		Draw the flow chart for Gauss-Seidel method with PV buses and	CO ₂	L2	12M		
		explain.					
		UNIT-IV					
7		Write an Algorithm for N-R Rectangular Coordinate Method when PV	CO ₅	L3	12M		
		Bus is absent.					
		OR					
8		Explain with a Flow Chart for N-R Polar Coordinate Method when PV Bus is absent.	CO5	L3	12M		
		UNIT-V					
9	a	What is stability? Explain different types of stabilities.	006	T 1	CNA		
,		Derive an expression for critical clearing angle.	CO6	L1	6M		
	U	OR	CO ₆	L2	6 M		
10		State and derive swing equation.	CO6	TЭ	121/1		
10		*** END ***	CO6	L2	12M		
		DIAM					